05 апреля 2009
Обновлено 17.05.2023

Вспомнить все. Эволюция компьютерной памяти

Вспомнить все. Эволюция компьютерной памяти - изображение обложка

В стародревние времена — дело было почти 80 лет назад, на заре становления вычислительной техники — память вычислительных устройств было принято делить на три типа. На первичную, вторичную и внешнюю. Сейчас этой терминологией уже никто не пользуется, хотя сама классификация существует и по сей день. Только первичную память теперь называют оперативной, вторичную — внутренними жесткими дисками, ну а внешняя маскируется под всевозможные оптические диски и флэш-накопители.

Прежде чем начать путешествие в прошлое, давайте разберемся в обозначенной выше классификации и поймем, для чего нужен каждый из типов памяти. Компьютер представляет информацию в виде последовательности бит — двоичных цифр со значениями 1 или 0. Общепринятой универсальной единицей информации считают байт, как правило, состоящий из 8 бит. Все используемые компьютером данные занимают некоторое количество байт. К примеру, типичный музыкальный файл занимает 40 миллионов бит — 5 миллионов байт (или 4,8 мегабайта). Центральный процессор не сможет функционировать без элементарного запоминающего устройства, ведь вся его работа сводится к получению, обработке и записи обратно в память. Именно поэтому легендарный Джон фон Нейман (мы не раз упоминали его имя в цикле статей про мейнфреймы) придумал размещать внутри компьютера независимую структуру, где хранились бы все необходимые данные.

Классификация внутренней памяти разделяет носители еще и по скоростному (и энергетическому) принципу. Быстрая первичная (оперативная) память в наше время используется для хранения критичной информации, к которой ЦП обращается наиболее часто. Это ядро операционной системы, исполняемые файлы запущенных программ, промежуточные результаты вычислений. Время доступа — минимально, всего несколько наносекунд.

Первичная память общается с контроллером, размещенным либо внутри процессора (у последних моделей ЦП), либо в виде отдельной микросхемы на материнской плате (северный мост). Цена на оперативку относительно высока, к тому же она энергозависима: выключили компьютер или случайно выдернули шнур из розетки — и вся информация потерялась. Поэтому все файлы хранятся во вторичной памяти — на пластинах жестких дисков. Информация здесь не стирается после отключения питания, а цена за мегабайт очень низкая. Единственный недостаток винчестеров — низкая скорость реакции, она измеряется уже в миллисекундах.

Кстати, интересный факт. На заре развития компьютеров первичную память не отделяли от вторичной. Главный вычислительный блок был очень медленным, и память не давала эффекта бутылочного горлышка. Оперативные и постоянные данные хранились в одних и тех же компонентах. Позже, когда скорость компьютеров подросла, появились новые типы носителей информации.

Назад в прошлое

Одним из основных компонентов первых компьютеров были электромагнитные переключатели, разработанные известным американским ученым Джозефом Хенри еще в 1835 году, когда ни о каких компьютерах никто даже не помышлял. Простой механизм состоял из обмотанного проводом металлического сердечника, подвижной железной арматуры и нескольких контактов. Разработка Хенри легла в основу электрического телеграфа Сэмюеля Морзе и Чарльза Витстоуна.

Первый компьютер, построенный на переключателях, появился в Германии в 1939 году. Инженер Конрад Зюс использовал их при создании системной логики устройства Z2. К сожалению, прожила машина недолго, а ее планы и фотографии были утеряны во время бомбардировок Второй мировой войны. Следующее вычислительное устройство Зюса (под именем Z3) увидело свет в 1941 году. Это был первый компьютер, управляемый программой. Основные функции машины реализовывались при помощи 2000 переключателей. Конрад собирался перевести систему на более современные компоненты, но правительство прикрыло финансирование, посчитав, что идеи Зюса не имеют будущего. Как и ее предшественница, Z3 была уничтожена во время бомбардировок союзников.

Электромагнитные переключатели работали очень медленно, но развитие технологий не стояло на месте. Вторым типом памяти для ранних компьютерных систем стали линии задержки. Информацию несли электрические импульсы, которые преобразовывались в механические волны и на низкой скорости перемещались через ртуть, пьезоэлектронный кристалл или магниторезистивную катушку. Есть волна — 1, нет волны — 0. В единицу времени по проводящему материалу могли путешествовать сотни и тысячи импульсов. По завершении своего пути каждая волна трансформировалась обратно в электрический импульс и отсылалась в начало — вот вам и простейшая операция обновления.

Линии задержки разработал американский инженер Джон Преспер Экерт. Компьютер EDVAC , представленный в 1946 году, содержал два блока памяти по 64 линии задержки на основе ртути (5,5 Кб по современным меркам). На тот момент этого было более чем достаточно для работы. Вторичная память также присутствовала в EDVAC — результаты вычислений записывались на магнитную пленку. Другая система, UNIVAC 1 , увидевшая свет в 1951 году, использовала 100 блоков на основе линий задержки, а для сохранения данных у нее была сложная конструкция со множеством физических элементов.

Дети Бобека

За кадром нашего исследования осталось два довольно значимых изобретения в области носителей данных. Оба сделал талантливый сотрудник Bell Labs Эндрю Бобек. Первая разработка — так называемая твисторная память — могла стать прекрасной альтернативой памяти на основе магнитных сердечников. Она во многом повторяла последнюю, но вместо ферритовых колец для хранения данных использовала магнитную пленку. У технологии были два важных преимущества. Во-первых, твисторная память могла одновременно записывать и считывать информацию с целого ряда твисторов. Плюс к этому, было легко наладить ее автоматическое производство. Руководство Bell Labs надеялось, что это позволит существенно снизить цену твисторной памяти и занять перспективный рынок. Разработку финансировали ВВС США, а память должна была стать важной функциональной ячейкой ракет Nike Sentinel. К сожалению, работа над твисторами затянулась, а на первый план вышла память на основе транзисторов. Захват рынка не состоялся.

«Не повезло в первый раз, так повезет во второй»,— подумали в Bell Labs. В начале 70-х годов Эндрю Бобек представил энергонезависимую пузырьковую память. В ее основе лежала тонкая магнитная пленка, которая удерживала небольшие намагниченные области (пузырьки), хранящие двоичные значения. Спустя какое-то время появилась первая компактная ячейка емкостью 4096 бит — устройство размером один квадратный сантиметр обладало емкостью целой планки с магнитными сердечниками.

Изобретением заинтересовались многие компании, и в середине 70-х разработками в области пузырьковой памяти занялись все крупные игроки рынка. Энергонезависимая структура делала пузырьки идеальной заменой как первичной, так и вторичной памяти. Но и тут планам Bell Labs не удалось сбыться — дешевые винчестеры и транзисторная память перекрыли кислород пузырьковой технологии.

Вакуум — наше все

К концу 40-х годов системная логика компьютеров переехала на вакуумные трубки (они же электронные трубки или термионные шахты). Вместе с ними новый толчок в развитии получили телевидение, устройства для воспроизведения звука, аналоговые и цифровые компьютеры.

Под загадочным словосочетанием «вакуумная трубка» скрывается довольно простой по строению элемент. Он напоминает обычную лампу накаливания. Нить заключена в безвоздушное пространство, при нагреве она испускает электроны, которые попадают на положительно заряженную металлическую пластину. Внутри лампы под напряжением образуется поток электронов. Вакуумная трубка умеет или пропускать, или блокировать (фазы 1 и 0) проходящий через нее ток, выступая в роли электронного компонента компьютеров. Во время работы вакуумные трубки сильно нагреваются, их надо интенсивно охлаждать. Зато они намного быстрее, чем допотопные переключатели.

Первичная память на основе этой технологии появилась в 1946-1947 годы, когда изобретатели Фредди Вильямс и Том Килберн представили трубку Вильямса — Килберна. Метод сохранения данных был весьма остроумным. На трубке при определенных условиях появлялась световая точка, которая слегка заряжала занимаемую поверхность. Зона вокруг точки приобретала отрицательный заряд (ее называли «энергетическим колодцем»). В «колодец» можно было поместить новую точку или оставить его без внимания — тогда первоначальная точка быстро исчезала. Эти превращения истолковывались контроллером памяти как двоичные фазы 1 и 0. Технология была очень популярна. Память на трубках Вильямса — Килберна устанавливали в компьютеры Ferranti Mark 1 , IAS , UNIVAC 1103 , IBM 701 , IBM 702 и Standards Western Automatic Computer (SWAC).

Параллельно свою трубку, именуемую селектрон, разрабатывали инженеры из компании Radio Corporation of America под управлением ученого Владимира Зворыкина. По задумке авторов селектрон должен был вмещать до 4096 бит информации, что в четыре раза больше, чем у трубки Вильямса — Килберна. Предполагалось, что к концу 1946 года будет произведено около 200 селектронов, но производство оказалось очень дорогим.

Вплоть до весны 1948-го Radio Corporation of America не выпустила ни одного селектрона, но работа над концептом продолжалась. Инженеры изменили дизайн трубки, и в продаже появилась уменьшенная ее версия емкостью 256 бит. Мини-селектроны были быстрее и надежнее трубок Вильямса — Килберна, но стоили по $500 за штуку. И это при массовом производстве! Селектронам, однако, удалось попасть в вычислительную машину — в 1953 году компания RAND выпустила компьютер под забавным названием JOHNNIAC (в честь Джона фон Неймана). В системе были установлены уменьшенные 256-битные селектроны, а общий объем памяти составлял 32 байта.

Наравне с вакуумными трубками в некоторых компьютерах того времени использовалась барабанная память, изобретенная Густавом Таусчеком в 1939 году. Простая конструкция включала большой металлический цилиндр, покрытый сплавом из ферромагнетика. Считывающие головки, в отличие от современных винчестеров, не перемещались по поверхности цилиндра. Контроллер памяти ждал, пока информация самостоятельно пройдет под головками. Барабанная память использовалась в компьютере Атанасова — Берри и некоторых других системах. К сожалению, ее производительность была очень низкой.

Современные тенденции

В данный момент рынком первичной памяти правит стандарт DDR. Точнее, второе его поколение. Переход на DDR3 состоится уже совсем скоро — осталось дождаться появления недорогих чипсетов с поддержкой нового стандарта. Повсеместная стандартизация сделала сегмент памяти слишком скучным для описания. Производители перестали изобретать новые, уникальные продукты. Все труды сводятся к увеличению рабочей частоты и установке навороченной системы охлаждения.

Технологический застой и робкие эволюционные шаги будут продолжаться до тех пор, пока производители не доберутся до предела возможностей кремния (именно из него изготавливают интегрированные микросхемы). Ведь частоту работы нельзя повышать бесконечно.

Правда, здесь кроется один подвох. Производительности существующих чипов DDR2 достаточно для большинства компьютерных приложений (сложные научные программы не в счет). Установка модулей DDR3, работающих на частоте 1066 МГц и выше, не ведет к ощутимому приросту скорости.

Звездный путь в будущее

Главным недостатком памяти, да и всех остальных компонентов на основе вакуумных трубок было тепловыделение. Трубки приходилось охлаждать при помощи радиаторов, воздуха и даже воды. К тому же постоянный нагрев существенно уменьшал время работы — трубки самым натуральным образом деградировали. Под конец срока эксплуатации их приходилось постоянно настраивать и в конечном итоге менять. Можете представить, скольких усилий и средств стоило сервисное обслуживание вычислительных систем?!

Потом наступило время массивов с близко расположенными ферритовыми кольцами — изобретение американских физиков Эн Вэнг и Вэй-Донг Ву, доработанное студентами под управлением Джея Форрестера из Массачусетского технологического университета (MIT). Через центры колец под углом 45 градусов проходили соединительные провода (по четыре на каждое кольцо в ранних системах, по два в более совершенных). Под напряжением провода намагничивали ферритовые кольца, каждое из которых могло сохранить один бит данных (намагничено — 1, размагничено — 0).

Джей Форрестер разработал систему, при которой управляющие сигналы для многочисленных сердечников шли всего по нескольким проводам. В 1951 году вышла память на основе магнитных сердечников (прямой аналог современной оперативной памяти). В дальнейшем она заняла достойное место во многих компьютерах, включая первые поколения мейнфреймов компаний DEC и IBM. По сравнению с предшественниками у нового типа памяти практически отсутствовали недостатки. Ее надежности хватало для функционирования в военных и даже космических аппаратах. После крушения шаттла «Челленджер», которое привело к смерти семи членов его экипажа, данные бортового компьютера, записанные в памяти с магнитными сердечниками, остались в полной целости и сохранности.

Технологию постепенно совершенствовали. Ферритовые кольца уменьшались в размерах, скорость работы росла. Первые образцы функционировали на частоте порядка 1 МГц, время доступа составляло 60 000 нс — к середине 70-х годов оно сократилось до 600 нс.

Дорогая, я уменьшил нашу память

Следующий скачок в развитии компьютерной памяти произошел, когда были придуманы интегральные микросхемы и транзисторы. Индустрия пошла по пути миниатюризации компонентов с одновременным повышением их производительности. В начале 1970-х полупроводниковая промышленность освоила выпуск микросхем высокой степени интеграции — на сравнительно малой площади теперь умещались десятки тысяч транзисторов. Появились микросхемы памяти емкостью 1 Кбит (1024 бит), небольшие чипы для калькуляторов и даже первые микропроцессоры. Случилась самая настоящая революция.

Особый вклад в развитие первичной памяти внес доктор Роберт Деннард, сотрудник компании IBM. Он разработал первый чип на транзисторе и небольшом конденсаторе. В 1970 году рынок подстегнула компания Intel (которая появилась всего двумя годами раньше), представив чип памяти i1103 емкостью 1 Кбит. Спустя два года этот продукт стал самым продаваемым полупроводниковым чипом памяти в мире.

Микросхемы высокой степени интеграции быстро вытеснили старые типы памяти. С переходом на следующий уровень развития громоздкие мейнфреймы уступили место настольным компьютерам. Основная память в то время окончательно отделилась от вторичной, оформилась в виде отдельных микрочипов емкостью 64, 128, 256, 512 Кбит и даже 1 Мбит.

Наконец, микросхемы первичной памяти переехали с материнских плат на отдельные планки, это сильно облегчило установку и замену неисправных компонентов. Частоты начали расти, время доступа уменьшаться. Первые синхронные динамические чипы SDRAM появились в 1993 году, их представила компания Samsung. Новые микросхемы работали на частоте 100 МГц, время доступа равнялось 10 нс.

С этого момента началось победоносное шествие SDRAM, а к 2000 году этот тип памяти вытеснил всех конкурентов. Определением стандартов на рынке оперативки занялась комиссия JEDEC (Joint Electron Device Engineering Council). Ее участники сформировали спецификации, единые для всех производителей, утвердили частотные и электрические характеристики.

Дальнейшая эволюция не так интересна. Единственное значимое событие произошло в 2000 году, когда на рынке появилась оперативная память стандарта DDR SDRAM. Она обеспечила удвоенную (по сравнению с обычной SDRAM) пропускную способность и создала задел для будущего роста. Вслед за DDR в 2004 году появился стандарт DDR2, который до сих пор пользуется наибольшей популярностью.

Patent Troll

В современном IT-мире фразой Patent Troll (патентный тролль) называют фирмы, которые зарабатывают деньги на судебных исках. Они мотивируют это тем, что другие компании нарушили их авторские права. Целиком и полностью под это определение попадает разработчик памяти Rambus.

С момента основания в 1990 году Rambus занималась лицензированием своих технологий сторонним компаниям. К примеру, ее контроллеры и микросхемы памяти можно найти в приставках Nintendo 64 и PlayStation 2. Звездный час Rambus настал в 1996 году, когда Intel заключила с ней соглашение на использование в своих продуктах памяти RDRAM и разъемов RIMM.

Сначала все шло по плану. Intel получила в свое распоряжение продвинутую технологию, а Rambus довольствовалась партнерством с одним из крупнейших игроков IT-индустрии. К сожалению, высокая цена модулей RDRAM и чипсетов Intel поставили крест на популярности платформы. Ведущие производители материнских плат использовали чипсеты VIA и платы с разъемами под обычную SDRAM.

Rambus поняла, что на этом этапе она проиграла рынок памяти, и начала свои затяжные игры с патентами. Первым делом ей под руку попалась свежая разработка JEDEC — память стандарта DDR SDRAM. Rambus накинулась на нее, обвинив создателей в нарушении авторских прав. В течение некоторого времени компания получала денежные отчисления, однако уже следующее судебное разбирательство с участием Infineon , Micron и Hynix расставило все по своим местам. Суд признал, что технологические наработки в области DDR SDRAM и SDRAM не принадлежат Rambus.

С тех пор общее количество исков со стороны Rambus к ведущим производителям оперативки превысило все мыслимые пределы. И, похоже, такой образ жизни компанию вполне устраивает.

Комментарии
Чтобы оставить комментарий,Войдите или Зарегистрируйтесь